The definitive version is available at http://http://online.medphys.org/.

F. P. Vidal, J. Louchet, J.-M. Rocchisani, and É. Lutton: Flies for PET: An artificial evolution strategy for image reconstruction in nuclear medicine. In *Medical Physics*, 37(6):3129, July 2010, American Association of Physicists in Medicine

DOI: 10.1118/1.3468200

```
@article{Vidal2010MedPhys-A,
  author = {F. P. Vidal and J. Louchet and \{J.-M.\} Rocchisani and \backslash E. Lutton},
  title = {Flies for {PET}: An Artificial Evolution Strategy for Image Reconstruction in Nuclear Medicine},
  journal = {Medical Physics},
 year = 2010,
 volume = 37,
 pages = {3139},
 number = 6,
 month = jul,
  address = {Philadelphia, Pensilvania, USA},
  annotation = {AAPM Annual Meeting, Jul~18--22, 2010},
 abstract = {Purpose: We propose an evolutionary approach for image
reconstruction in nuclear medicine. Our method is based on
a cooperative coevolution strategy (also called Parisian evolution):
the ''fly algorithm''.
Method and Materials: Each individual, or fly,
corresponds to a 3D point that mimics a radioactive emitter, i.e.
a stochastic simulation of annihilation events is performed to compute
the fly's illumination pattern. For each annihilation, a photon is
emitted in a random direction, and a second photon is emitted in
the opposite direction. The line between two detected photons is
called line of response (LOR). If both photons are detected by
the scanner, the fly's illumination pattern is updated.
The LORs of every fly are aggregated to form the population total
illumination pattern. Using genetic operations to optimize the position
of positrons, the population of flies evolves so that the population
total pattern matches measured data. The final population of flies
approximates the radioactivity concentration.
Results: We have developed numerical phantom models to assess
the reconstruction algorithm. To date, no scattering and no tissue attenuation
have been considered. Whilst this is not physically correct, it allows us
to test and validate our approach in the simplest cases.
Preliminary results show the validity of this approach in both 2D and
fully-3D modes. In particular, the size of objects, and
their relative concentrations can be retrieved in the 2D mode.
In fully-3D, complex shapes can be reconstructed.
Conclusions: An evolutionary approach for PET reconstruction has been proposed
and validated using simple test cases. Further work will therefore include
the use of more realistic input data (including random events and scattering),
which will finally lead to implement the correction of scattering within our algorithm.
A comparison study against ML-EM and/or OS-EM methods will also need to be conducted.},
  doi = {10.1118/1.3468200},
 publisher = {American Association of Physicists in Medicine}
}
```

Flies for PET: An artificial evolution strategy for image reconstruction in nuclear medicine

F. P. VIDAL¹, J. LOUCHET², J.-M. ROCCHISANI³, and É. LUTTON⁴
¹ University of California, San Diego, La Jolla, CA
² Artenia, Chatillon, FR
³ Paris XIII University, Bobigny, FR
⁴ INRIA Saclay âĂŘ IleâĂŘdeâĂŘFrance, Orsay, FR

Purpose

We propose an evolutionary approach for image reconstruction in nuclear medicine. Our method is based on a cooperative coevolution strategy (also called Parisian evolution): the "fly algorithm".

Method and Materials

Each individual, or fly, corresponds to a 3D point that mimics a radioactive emitter, i.e. a stochastic simulation of annihilation events is performed to compute the fly's illumination pattern. For each annihilation, a photon is emitted in a random direction, and a second photon is emitted in the opposite direction. The line between two detected photons is called line of response (LOR). If both photons are detected by the scanner, the fly's illumination pattern is updated. The LORs of every fly are aggregated to form the population total illumination pattern. Using genetic operations to optimize the position of positrons, the population of flies evolves so that the population total pattern matches measured data. The final population of flies approximates the radioactivity concentration.

Results

We have developed numerical phantom models to assess the reconstruction algorithm. To date, no scattering and no tissue attenuation have been considered. Whilst this is not physically correct, it allows us to test and validate our approach in the simplest cases. Preliminary results show the validity of this approach in both 2D and fully-3D modes. In particular, the size of objects, and their relative concentrations can be retrieved in the 2D mode. In fully-3D, complex shapes can be reconstructed.

Conclusions

An evolutionary approach for PET reconstruction has been proposed and validated using simple test cases. Further work will therefore include the use of more realistic input data (including random events and scattering), which will finally lead to implement the correction of scattering within our algorithm. A comparison study against ML-EM and/or OS-EM methods will also need to be conducted.

Flies for PET: an Artificial Evolution Strategy for Image Reconstruction in Nuclear Medicine

We present an iterative algorithm based on an evolutionary approach for image reconstruction in nuclear medicine. Our method is based on a cooperative coevolution strategy (also called Parisian evolution): the "fly algorithm". Each fly is a 3D point that mimics a positron emitter. The flies' position is progressively optimised using evolutionary computing to closely match the data measured by the imaging system. The population of flies approximates the radioactivity concentration. We have developed new genetic operators that have been proven to be more efficient than state-of-the-art operators used in evolutionary computing⁵. To speed-up computations, the reconstruction is automatically performed at progressive resolution.


Introduction Image reconstruction in tomography is an ill-posed inverse problem. This problem can be solved as an optimisation problem, and on such cases, evolutionary algorithms (EAs) have been proven efficient in general, and in particular in medical imaging. We focus here on tomographic reconstruction in PET.

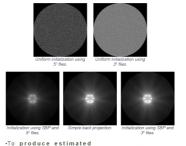
Artificial Evolution Evolutionary computing is a family of optimisation algorithms relying on Darwin's principles. In particular, it makes use of operators based on the biological mechanisms of natural evolution.

Standard PET reconstruction algorithms into two classes:

i) analytical methods, and ii)iterative statistical methods

Analytical methods are based on continuous modeling and the reconstruction process consists in the inversion of measurement equations. The most frequently used algorithm is the filtered back-projection (FBP).

- Statistical methods are based on iterative correction algorithms. These methods are relatively easy to model: 1. the reconstruction starts using an initial estimate of the image (generally a constant image). 2. projection data is computed from this image, 3. the estimated projections are compared with the measured projections; 4. corrections are made to correct the estimated image, and 5. the algorithm iterates until convergence of the estimated and measured projection sets.

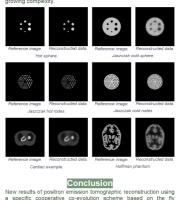

There are different ways to implement these iterative methods. The main differences are about the computation of the projections, how the physics corrections (scattering, random, attenuation, etc.) are applied, and how the error corrections are applied in the estimated projections. Iterative methods include the most widely used techniques in SPECT and PET, such as the maximum-likelihood expectation-maximization method (ML-EM) and its derivative, the ordered subset expectation-maximization algorithm (OS-EM).

(1) A. Bousnett J. Louchet, and J. M. Rocchain. "By three-dimensional tomographic evolutionary reconstruction in medicors". In Proceedings of EA97. LNCS, vol. 4026, pp. 231–242, 2007. (2) FP Wilds, J. Louchet, E. Lutton, and J.-M. Rocchaina." PET reconduction using a comparative processing and approximate in IEEE Modera Science Symposium conferences Records 3333–334, 05, 050 moders." In IEEE Modera Science Symposium Conferences Records 3333–334, 05, 051.

PET reconstruction using the fly algorithm. The algorithm that we present here follows the iterative algorithm gradigm. In preliminary studies, we introduced a cooperative coevolution strategy (or 'Parsian evolution') called 'fly algorithm' to minimize errors between the estimated projection data and the measured data. We showed that this approach can be used in SPECT reconstruction 1 and PET reconstruction 2-34. Here, the searched distribution of radionucildes is modeled as a sample stor of 3D points, the population of 'flies'. Each fly emits either photons or positrons depending on the image modality. The evolutionary algorithm evolves the position of flies using genetic operators to match reconstructed data with measured data.

The steps of the iterative method can be described as follows: -Start with an initial guess. Initially, the files' position is uniformly distributed within the volume defined by the scanner, or distributed depending on an initial estimate reconstructed using a fast simple back projection (SBP) performed on GPU using OpenGL. Each individual, or fly, corresponds to a 3D point.

Since To produce estimated projection data, each fly minics a radioactive emitter, i.e. a stochastic simulation of annihilation events is performed. For each annihilation event, a photon is emitted in a random direction. A second photon is then emitted in the opposite direction. If both photoms are offected emitted in the opposite direction. If both photoms are offected offection and each fly is producing an adjustable number of annihilation events. The optimization is performed ur


Each Elv R nts an Emitting Poin The optimisation is performed using genetic operations. The fitness function used during the selection operation takes into

(3) FP: Vdat D. azaro-Porthus, S. Legoupi, J. Louchet, É. Lutton, and J.-M. Rocchisani: International Control of a D FET reconstruction." In Proceedings of EADB LNCS, vol. 5975, 442 (2016). (3) FP: Vdata, J. Louchet, J.-M. Rocchisani, and E. Lutton. "New genetic operators in the Fly algorithm: application to medical FET image reconstruction". In Proceedings of End/AFPI (JNCS, vol. 6020, pp. 22-01, 2010).

account the discrepancies between the estimated projections and the measured projections (see [4] for details about the fitness metric). The regularization is taken care by the mutation operator. Multi-resolution is achieved thanks to our mitosis operator. Then the reconstruction is optimum at the current resolution, an automatic mitosis is triggered to double the bodu our specific generic operator solutions (see [4.5] for details bodu our specific generic operator solutions (see [4.5] for details bodu our specific generic operator solutions (see [4.5] for details bodu our specific generic operator solutions (see [4.5] for details with the measured data, (et he special concentration of lies will correspond to an estimate of the radionuclides' concentration.

Results

In [2.3], we showed the ability of the early version of the algorithm (i.e. without taking advantage of some specific genetic operators we designed in [4.5]) to reconstruct simple 2D objects at low resolution. In [4], results at higher resolution are presented, as well as the fully-3D reconstruction of an object with a complex shape. This section presents new results, obtained using our specific greation shares well as a solution of the solution of the solution of the great operations with more solution solution and the solution of the great operations of the solution of the solution of the solution of the great operation of the solution of the solution of the solution of the great operation operation of the solution of the solution of the great operation operation of the solution operation of the solution operation operation operations of the solution operation operation operation operations of the solution operation operation operations of the solution operation operation operation operation operations of the solution operation operation operation operation operations of the solution operation operation operation operations of the solution operation operation operations of the solution operation operation operation operations of the solution operation operations of the solution operation operation operations of the solution operation operation operation operations of the solution operation operation operation operation operations of the solution operation oper wina

Conclusion New results of positron emission tomographic reconstruction using a specific cooperative co-evolution scheme based on the fly algorithm have been presented. It demonstrated the ability of the algorithm to reconstruct images using input data that corresponds to standard phantom models (the Standard Jaszczak phantom) and anatomically realistic models (cardiac and brain). However, the reconstruction of hol regions seems better than the reconstruction of cold areas; this needs to be addressed. Further work will include a concurrent study with the OS-EM algorithm and a quantitative analysis of the results. Further work will also include the correction of photon attenuation and Compton scattering in the modeled system matrix.

(5) F.P. Vidal, É. Lutton, J. Louchet and J.-M. Rocchisani: "Threshold selection, mitosis and dual mutation in cooperative co-evolution: application to medical 3D tomography". In Proceedings OFPSM 10. LNCS. To be published. Contact: franck.p.vidal@gmail.com

Figure 1: Poster presented at AAPM Annual Meeting, Philadelphia, Pensilvania, USA, Jul 18– 22, 2010.