Fly4Arts : Evolutionary Digital Art with the Fly Algorithm

Zainab Ali Abbood' and Franck P. Vidal’

School of Computer Science, Bangor University, UK, z.a.abbood@bangor.ac.uk, f.vidal@bangor.ac.uk

ABSTRACT. The aim of this study is to generate artistic images, such as digital mosaics, as an optimisation problem
without the introduction of any a priori knowledge or constraint other than an input image. The usual practice to produce
digital mosaic images heavily relies on Centroidal Voronoi diagrams. We demonstrate here that it can be modelled as an
optimisation problem solved using a cooperative co-evolution strategy based on the Parisian evolution approach, the Fly
algorithm. An individual is called a fly. Its aim of the algorithm is to optimise the position of infinitely small 3-D points (the
flies). The Fly algorithm has been initially used in real-time stereo vision for robotics. It has also demonstrated promising
results in image reconstruction for tomography. In this new application, a much more complex representation has been
study. A flyisa tile. Ithasits own position, size, c olour, and rotation a ngle. O ur m ethod t akes a dvantage o f graphics
processing unit (GPU) to generate the images using the modern OpenGL Shading Language (GLSL) and Open Computing
Language (OpenCL) to compute the difference between the input image and simulated image. Different types of tiles are
implemented, some with transparency, to generate different visual effects, such as digital mosaic and spray paint. An online
study with 41 participants has been conducted to compare some of our results with those generated using an open-source
software for image manipulation. It demonstrates that our method leads to more visually appealing images.

KEYWORDS. Digital mosaic, Evolutionary art, Fly algorithm, Parisian evolution, cooperative co-evolution.

(a) (b) () (d) (e)

Figure 1. Evolutionary art using the Fly algorithm : (a) Welsh flag, (b) a multicolour spiral, (c) another multicolour
spiral, (d) view from Garnedd Ugain of Y Lliwedd in Snowdonia (Wales), and (e) from an image generated using
ArtiE-Fract (courtesy of Dr Evelyne Lutton).

1. Introduction

The problem of automatically translating an input image (e.g. a photograph) into digital art, such as
mosaics, can be described using the notation below :

Given a rectangular region I? in the plane R?, a dataset of N tiles, a set of constraints, and
a vector field ¢(x,y) defined on that region, find N sites P;(x;,y;) in I? to place the N tiles,
one at each site P;, such that all tiles are disjoint, the area they cover is maximised and the
constraints are verified as much as possible.

The most common techniques to express (adapt) it to generate digital art depend on Centroidal Voronoi
(CV) diagrams (see Section on Previous Work in [1] for details). In this paper, we solve it as an opti-
misation problem using a cooperative co-evolution approach based on the Parisian evolution strategy,
the Fly algorithm. Its main feature is to consider each fly as a part of the problem’s solution. Here the

© 2017 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page |1

X
Fly —
Position z
Colour
Rotation Angle r
. L
Scaling factor ﬁ
Local fitness
ol W
h
(a) Structure of the fly data. (b) Random initial population.

Figure 2. Structure of an individual fly and the whole population.

goal is to find the best set of tiles and how to assemble them onto a rectangular region to approximate
a colour image. Figure 1 shows reconstructed images using such sets of tiles. Each tile is characterised
by 4 features : position, colour, scale and rotation angle. Our algorithm is partly implemented on GPU
to speed up computations : 1) digital images are generated using GLSL, and ii) the fitness function is
computed using GLSL and OpenCL. The evolutionary algorithm is executed on the central processing
unit (CPU).

This article is organised as follows. Section 2 explains how to adapt the Fly algorithm to generate
digital art. The following section presents our results. Several images have been created using different
versions of the algorithm to generate various visual effects. This section presents an online study in
which 41 participants had to judge the visual quality of individual images. Some were generated with our
approach, others were corresponding images generated with a famous open-source software. Concluding
remarks are given in the last section.

2. Evolutionary digital arts

To solve the 2-D digital art reconstruction problem, we follow the same main principles as in 3-D
using the Fly algorithm [2]. The individuals still correspond to extremely simple primitives : The flies.
In positron emission tomography (PET) reconstruction, flies corresponded to 3-D points only. Here the
structure of flies is more complex to correspond to rectangular tiles. Therefore, each fly is a vector of
9 elements (see Fig.2a) :

Position is a 3D point with coordinates (x, y, 2), which are randomly generated between 0 and width —
1, 0 and hetght — 1, and -1 and 1 respectively (with width and height the number of pixels in the
image along the x- and y-axes).

Colour has three components (7, g, b) (for red, green and blue), which are randomly generated between
0 and 1. This is to ensure diversity at the start of the optimisation.

Rotation Angle is randomly generated between 0 and 360.

Scaling factor has two components (w, h), which control the size of the tile along its horizontal and
vertical axes.

© 2017 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page |2

Framebuffer

Texture ref

Fragment shader Framebuffer Boost.compute

| FragColor = abs (texture of ref -
—> gl_rrag (

Summation of all
texture of pop) >

—| Texture result img elements of img

Texture pop

Framebuffer

Figure 3. Computation of the marginal fitness on GPU for two images using GLSL and OpenCL (in yellow and green
boxes respectively).

Population

—»| Vertex shader —_; Fragment shader —3» Framebuffer —»| Texture of pop

Mask

Figure 4. Generation of pop using different masks and GLSL fragment shaders.

Our algorithm follows a steady-state evolutionary strategy. At each iteration of the optimisation pro-
cess, a bad fly is selected for death and replaced with another one using genetic operators. The algorithm
starts to create an image based on a random initial population. An example of reconstructed image is
shown in Figure 2b. The algorithm’s aim is to minimise the difference between the reconstructed image
(pop) and the input image (ref). This difference is called global fitness and it quantifies how good the
whole population is. During the evolutionary process, the flies are selected based on their own local
fitness and genetic operators applied (mostly mutation and new blood).

Global fitness : We assess the whole population by comparing the input image with the simulated
image. We use the sum of absolute error (SAE) (also known as Manhattan distance) to quantify the
error between re f and pop :

i<width j<height
SAE(pop, ref) = Z Z [ref(i,j) — pop(i, j)| 11
=0 j=0

Computing the SAE in this application is time consuming on a CPU. Therefore, all the computa-
tions to generate images are performed on a GPU using the GLSL (see Figure 3). pop is generated
offline using a framebuffer object (FBO). Figure 4 shows the process of fitting a tile with cer-
tain mask (it can produce different visual effects by using different masks and fragment shaders).
Images (including pop and ref) are stored using 2-D OpenGL textures. The textures are then pas-

© 2017 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page |3

(a) Reference image. (b) Image reconstructed (¢) Image reconstructed (d) Image reconstructed
using the set of stripes mask. using the square mask. using the flower mask.

Figure 5. Examples of 2-D Reconstruction using the Fly algorithm. The original image is from the Open Images Dataset
(https://github.com/openimages/dataset) under CC BY 4.0 license.

sed to a GLSL shader program to compute the pixel-wise absolute error between re f and pop. The
sum is also performed on the GPU, but using the OpenCL implementation of the reduction operator
supplied by Boost.Compute [3, 4]. It provides the SAE in an effective manner.

Local fitness : Our implementation looks for ‘bad’ individuals to replace them by ‘good’ ones. During
the selection process based on the Threshold selection operator [5], we measure how good or bad
the contribution of Fly 7 is. It relies on the SAE metrics with the leave-one-out cross-validation
method, which is why the local fitness is also called marginal fitness, F),, :

Fyu(i) = SAE(pop — {i} ,ref) — SAE(pop, re) 2]

The population is assessed with and without Fly i. Therefore, if the SAE is greater with Fly
than without, then Fly ¢ has a negative effect on the performance of the population : the fly could
be killed. If the error is smaller with Fly 7 than without, then Fly ¢ has a positive impact on the
performance of the population : the fly is a good candidate for reproduction. SAE(pop — {i} , ref)
is computed in a similar manner as SAE(pop, ref).

3. Results

Figure 5 show some results of the same image (Toucan) using different masks. More results are avai-
lable as videos on YouTube athttp://tinyurl.com/ho5kfvb. Our algorithm is relatively flexible
as it can adjust to different schemes such as :

— Different image sizes;

— Different colour quantisations;

— Different shapes of tiles : flower, set of lines and square (see Figure 6).
— With or without restart mechanism.

To demonstrate the usefulness of our approach, a comparison study between the proposed algorithm
and the GNU Image Manipulation Program (GIMP) has been performed using three test images (Glasses,
Bird and Woman) and three types of masks (rectangles, flower and stripes) (see Figure 6). It can be
visually observed in Figure 7 that our method leads to better reconstructions in term of edges and colours
(brightness). We conducted an online survey to rate the corresponding 18 images (3 x 3 created using
our method, 3 x 3 using GIMP). The images are presented in a random order to the participant during

© 2017 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page 4

(a) (b) (c) (d)

Figure 6. Examples of tile templates.

Tableau 1. Absolute category rating of the images of Figure 7

Rating | Label | Count of proposed method | Count of GIMP
5 Excellent 32 7
4 Good 86 50
3 Fair 110 78
2 Poor 71 125
1 Bad 19 59

the survey. For each image, we asked the participants to rate its quality in terms of visual appearance.
The rating scale used during the evaluation is called Absolute Category Rating scale. It maps ratings
between bad and excellent to numbers between 1 and 5. Table 1 illustrates how many times each label
was selected for images of our method and for GIMP. The mean opinion score (MOS) metrics has been
used to a quantitative evaluation of the results. For each image, MOS is calculated as follows :

Song Fn

MOS = = [1]
where R are the individual ratings for a given stimulus by N participants. Figure 7 shows the MOS
values for each image. The MOS values of the images of our method are systematically higher than the
corresponding ones of GIMP. The MOS values for all images are also ranked. It shows that the images
of our method are mostly in the beginning of the list (1, 2, 3, 4, 6, 8 and 9). The images of GIMP are in
the end of the list (11, 12, 13, 14, 15, 16, 17 and 18). There is one exception : the glass image of GIMP
with the flower mask is #5. However, the MOS value of that image is 3.1, which is less than the same
image of proposed method (3.4).

4. Conclusion

This article showed that the Fly algorithm can be adapted to the field of digital arts for creating visual
effects on an image in a fully-automatic fashion. Before the algorithm was used in PET reconstruction.
We moved from a simple structure of fly to a more complex one with a lot more properties than ever.
Our implementation takes advantage of real-time computer graphics rendering techniques to generate the
image data and GPU computing to calculate the fitness functions. An online comparison study (user eva-
luation survey) has been performed, using 18 images, amongst which 9 were generated by our proposed
method and 9 using GIMP. According to the participants, our proposed method produced better images

© 2017 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page |5

Masks Images of proposed method Images of GIMP
Glasses Bird ‘Woman Glasses Bird ‘Woman

Square

MOS 2.9 3.3 2.8 2.5 2.6 2.5
Rank 6 4 9 12 11 13
Flower

MOS 3.4 3.6 2.9 3.1 2.4 2.5
Rank 3 1 6 5 15 14
Stripes

MOS 2.8 3.4 2.8 2.1 2.0 2.4
Rank 9 2 8 17 18 16

Figure 7. Images used in the online survey. The woman image (Fatima) is from the artist Lubna Ashrafis.
Other test images are from the Open Images Dataset (https://github.com/openimages/dataset)
under CC BY 4.0 license.

in terms of visual appearance. Future work will include improving the performance of the algorithm to
use progressive multi-resolution based on the mitosis operator initially developed for PET reconstruction
using the fly algorithm, and the development of a filter (plugin) for GIMP.

Bibliographie

Ali Abbood, Z., Amlal, O., Vidal, EP. : Evolutionary art using the Fly algorithm. In : Applications of Evolutionary
Computation. Volume 10199 of Lecture Notes in Computer Science., Springer, Heidelberg (April 2017) 455-470

Ali Abbood, Z., Lavauzelle, J., Lutton, E., Rocchisani, J.M., Louchet, J., Vidal, E.P. : Voxelisation in the 3-D Fly algorithm
for PET. Swarm and Evolutionary Computation (2017) In press.

Lutz, K. : Boost.Compute. http://boostorg.github.io/compute/ Accessed : 2016-10-26.

Gaster, B., Howes, L., Kaeli, D.R., Mistry, P, Schaa, D. : Heterogeneous Computing with OpenCL. 1*' edn. Morgan
Kaufmann (2011)

Vidal, EP,, Louchet, J., Rocchisani, .M., Lutton, E. : New genetic operators in the Fly algorithm : Application to medical
PET image reconstruction. In : Applications of Evolutionary Computation : EvoApplicatons 2010. (2010) 292-301

© 2017 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page 16

