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Abstract

This paper is an overview of a method recently published in a biomedical journal (IEEE
Transactions on Biomedical Engineering1). The method is based on an optimisation tech-
nique called “evolutionary strategy” and it has been designed to estimate the parameters of a
complex 15-D respiration model. This model is adaptable to account for patient’s specificities.
The aim of the optimisation algorithm is to finely tune the model so that it accurately fits
real patient datasets. The final results can then be embedded, for example, in high fidelity
simulations of the human physiology. Our algorithm is fully automatic and adaptive. A
compound fitness function has been designed to take into account for various quantities that
have to be minimised (here topological errors of the liver and the diaphragm geometries). The
performance our implementation is compared with two traditional methods (downhill simplex
and conjugate gradient descent), a random search and a basic real-valued genetic algorithm.
It shows that our evolutionary scheme provides results that are significantly more stable and
accurate than the other tested methods. The approach is relatively generic and can be easily
adapted to other complex parametrisation problems when ground truth data is available.

Keywords: Evolutionary computation, Evolutionary computation, inverse problems,
medical simulation, adaptive algorithm.

1 Introduction
The simulation of complex physiological phenomena often requires highly dimensional models.
These models may be adaptable to account for patient’s specificities. They can be used in various
medical contexts, for example:

• Reducing motion artefacts in positron emission tomography (PET) and cone-beam computed
tomography (CBCT) to improve the image quantification [11, 26]

• Accurate dose calculation in radiotherapy treatment planning [12]

• High fidelity computer-based training simulators [18]

The numerical accuracy of such simulations will depend on: i) the intrinsic limitations of the
models and ii) on the parameters of the models. The calibration and parametrisation of the
models are therefore critical to obtain the highest level of realism. For medical training simulators
using virtual reality, the parameters are, however, often manually tuned using trial and error. This
is very time consuming and it is not possible to make sure that the results are optimal.
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In [23, 22] we presented methods to automatically tune such a model. The first method made
use of a pure random search and the second made use of the evolutionary approach summarised
here. The parametrisation corresponds to finely set 15 parameters of a patient specific respiration
model. It will be used throughout the paper as the application example. The model takes into
account the deformation of the diaphragm and liver [24]. We solve the parametrisation of this
fifteen-dimensional (15-D) model as an inverse problem. The idea is to automatically fit the ana-
lytic model to experimental data using an optimisation technique. In our application example,
two quantities are simultaneously minimised (topological errors of the diaphragm and liver). Gen-
eric approaches – such as downhill simplex, conjugate gradient descent, random search and basic
real-valued genetic algorithm – were first deployed. These generic optimisation methods did not
provide suitable solutions.

Our approach makes use of an adaptive evolutionary algorithm (EA) that is able to explore a
search space with 15 dimensions. We choose an evolutionary framework because:

• EAs can be used when little is known about the function to optimise, e.g. when no derivative
is known.

• This function does not need to be very smooth.

• EAs can work with any search space.

• EAs are less likely to stop at local optima than classical deterministic optimisation methods.

Our method is fully automatic and adaptive. It leads to significantly better tuning. The approach
is generic and can be easily generalised to other models when ground truth is available and the
differences between the model outputs and ground truth can be numerically measured.

Section 2 briefly presents related work. The analytic model of respiration is described in
Section 3. Details about our evolutionary algorithm are provided in Section 4. In Section 5,
the performance of the algorithm is analysed and compared with the performance of the other
methods. Some conclusions are finally presented in Section 6.

2 Related Work
2.1 Optimization Based on Artificial Evolution
Artificial Evolution is the generic name of a large set of techniques that rely on the computer sim-
ulation of natural evolution mechanisms. Since the pioneering works of A. Fraser, H.-J. Bremer-
mann, and after them, J. Holland and I. Rechenberg, Artificial Darwinism has progressively gained
a major importance in the domain of stochastic optimisation and artificial intelligence [6].

The basic idea in Artificial Evolution is to copy, in a very rough manner, the principles of
natural evolution, which let a population be adapted to its environment. According to Darwin’s
theory, adaptation is based on a small set of very simple mechanisms:

• Random variations

• Survival/Reproduction of the fittest individuals

Computer scientists have transposed this scheme into optimisation algorithms.
Considering evolutionary optimisation as a “black box” is not a good strategy in general because

one may lose an opportunity to adapt to the problem. Adapting the evolutionary mechanisms to
the specificities of the problem usually improves the efficiency of the algorithms and reduces its
computation time. In particularly difficult problems it is always helpful to compare evolutionary
approaches to a pure random optimisation to evaluate the improvement due to the “intelligence”
set in the genetic operators. This is what we do in Section 5. In our context, the random search
algorithm generates a given number of sets of 15 random parameters [23]. The set of parameters
that provides the lowest fitness is extracted and corresponds to the solution of the optimisation
problem.
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2.2 Breathing Simulation
Computer-based simulations of respiration can be found in different areas. The level of fidelity
that needs to be reached depends on the application domain. For example, in radiotherapy the
model accuracy is the first consideration. To precisely represent the real organ behaviour, complex
mechanical laws are used and their equations are solved using the finite-element method [1]. In
computer animation for movies a high degree of fidelity is not essential. For example, in [27] a
mass-spring system is used in realtime to simulate the thoracic muscles.

For medical training simulators there is a tradeoff between accuracy and speed: i) the per-
ception should be realistic enough to train medical students on cases that are close to the reality
and ii) the computation has to be performed in realtime to integrate haptics and graphics. For
example, Hostettler et al. use a method based on geometrical constraints and the viscera are only
modelled using a single envelope that wraps all the organs [10]. The method we propose here takes
into account the motion of each organ due to the respiration. It relies on a geometrical method
that takes into account mechanical-based parameters.

3 Respiration Model
3.1 Real behavior Analysis
The diaphragm and the intercostal muscles are the main muscles that are involved in the breathing
process [17]. In the case of abdominal-surgery simulators, a key challenge is to precisely take them
into account as they follow the respiration movement. The liver has an up-and-down displacement
while being compressed by the diaphragm deformations.

The diaphragm is composed of two parts: i) a very rigid tendon and ii) muscle parts that
contracts and relaxes. The diaphragm is also attached to the floating ribs and to the spine. In
our study we assume that the influence of the intercostal muscle is negligible because the patient
is lying on his/her back.

3.2 Organ behavior modeling
We choose to focus on the liver because it is the targeted organ in [24] and on the diaphragm
because it is the active muscle (see above). We use the generalised extension [13] of the 3D Chain-
Mail [7] to simulate the soft-tissue deformation. The main reason for this choice is the relatively
small computing time. Instead of computing the deformation field based on time integration of
the forces, as other physically-based methods [16], the 3D ChainMail only uses geometrical equa-
tions that are quickly computed. It also preserves the use of parameters that have links with
bio-mechanical approaches: i) the compression (Si), ii) the stretching (Stri) and iii) the shearing
(Shi) (where i designates the organ of interest).

In Section 3.1, we saw the the diaphragm is decomposed into two parts. The diaphragm is split
using the Cartesian equation of a plane (a.x+b.y+c.z+d = 0). As boundary conditions, we chose
to impose a null displacement when the diaphragm is close to the ribs (defined by a distance Dribs)
and to impose a uniform 3D force to the whole tendon part (defined by (Fx, Fy, Fz)). The muscle
part can deform. The deformation is governed by the muscle elasticity. The muscle stretches from
the point attached to the ribs to the moving tendon.

The attachments of the liver to the diaphragm are modelled by a distance (Ddiaph). It is used
to define the points that directly follow the diaphragm. It mimics a rigid link that simulates the
compression of the liver by the diaphragm during the respiration process. The other parts of the
liver deforms following the ChainMail algorithm.

3.3 Parameter Analysis
Various parameters have been extracted from the model previously described (see Fig. 1). These
parameters are unique to each patient and need to be individually customised. There are bio-
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mechanical parameters, anatomy-based geometrical constraints and respiration pattern informa-
tion. More details on these parameters can be found in [23].

3.4 Model Evaluation
To optimise the model parameters we need datasets of different patients but also metrics to
evaluate the accuracy of the respiration model. Three geometrical models are in used at any
one time (see Fig. 2). The simulation always starts at the real inspiration state (Geometry GIR)
extracted by segmenting the real data. The aim is to reach the real expiration state (Geometry
GER) with as little numerical errors as possible. GER is also extracted by segmentation of the real
data. In the 4D CT case (Geometry GtR), going through intermediate states t is also achievable.
The metrics assesses the accuracy of a simulated geometry GtS compared to the ground truth
geometry extracted at the same time step t.

To compute the difference between two geometries, we choose to analyse for each vertex of
each mesh the point-to-surface distance [2]. It is based on a distance measure d (p,G′) between a
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point p belonging to a surface G and a surface G′ as follows:

d (p,G′) = min
p′∈G′

‖p− p′‖ (1)

In this application, the root mean square error (ERMS (GtS , GtR)) defined by Eq. (2) is used.

ERMS

(
GtS , G

t
R

)
=
√

1
GtS

∫∫
p∈Gt

S

d (p,GtR)2 dS (2)

4 Optimization Algorithm
The inverse problem considered here corresponds to an error minimisation problem. The optim-
isation algorithm will therefore aim at reducing the fitness function (see Section 4.8). A Basic
Real-Valued Genetic Algorithm has been first implemented using an elitist generational approach
(see Fig. 3). Based on natural selection, different individuals will be competing to produce off-
springs. During an optimisation loop, a new population is created from the previous generation of
individuals. To create a new individual a genetic operator is randomly chosen. Such operators are:
i) elitism, ii) mutation, iii) crossover, and iv) new blood. A probability of occurrence is assigned to
each operator (W , X, Y , and Z respectively). When the algorithm stops improving the results,
there is stagnation and the individual that is the most adapted to the environment is extracted.
This is the individual with the smaller fitness function.

4.1 Genotype
Each individual embeds 15 parameters (coded as floating point numbers). They correspond to the
model unknown values described in Sections 3.2 and 3.3 and illustrated in Fig. 1.

4.2 Tournament Selection
To create a new individual using mutation or crossover, one or several individuals of the previous
generation need to be selected. This is performed using a “tournament”. A given number of
random (x) individuals from the whole population are assessed. The best individual amongst x is
selected. It is the one with the lowest fitness.
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4.3 Mutation
X% of the new individuals are created using the mutation operator. An individual is selected. The
new individual is a slightly modified version of the selected individual to introduce spontaneous
and random changes:

C ′i = Ci + Rangei
2 × k(σ) (3)

with Ci the i-th parameter of the selected individual, C ′i the new parameter, Rangei the range
of possible values for a given parameter (i), k a random number in the interval [−1, 1], and σ a
parameter of the evolutionary algorithm that control the range of possible random changes.

4.4 Crossover
Y% of the new individuals are created using BLX (for blend crossover) [8]. Two individuals
(1 father and 1 mother) are obtained via tournaments. The crossover corresponds to:

C ′i = R× C1i + (1−R)× C2i (4)

with C1i is the i-th parameter of the father and C2i is the i-th parameter of the mother, Cï£·i

is the i-th parameter of the new individual, and R a random number between 0 and 1. This
operation is performed on every gene.

4.5 Elitism
All the individuals of the population are ranked. W% of the individuals of the new population
correspond to the best individuals of the previous population.

4.6 New Blood (or Immigration)
Z% of the individuals of the new population are completely new. Their genes are purely randomly
generated.

4.7 Adaptive Mutation Variance
In classical implementations, the σ value is fixed. A variable, adaptive or self-adaptive mutation is
beneficial in optimisation [3]. Adaptive mutation is actually a scheme that has been experimentally
observed in natural population, for example stress mutation in bacteria populations [9].

In practice, stress mutation is used in our implementation to use an adaptive strategy for σ. It
allows the algorithm to control search space. σ is bigger when fitness (f) is high and smaller when
fitness is low. The idea is to favour large exploration around bad individuals, whilst performing
fine tuning in the vicinity of good individuals. It makes use of a scaled and stretched cosine
function (see Fig. 4). σ in Eq. 3 is replaced by:

σ(f) =


σmin, f < fitmin
σmax, f > fitmax
σmin + (σmax − σmin)×

cos
(
π× f−fitmin

fitmax−fitmin

)
+1.0

2.0 , otherwise

(5)

f corresponds to the fitness of the individual who will undergo a mutation. σ(f) smoothly varies
between the smaller (fitmin) and the larger (fitmax) fitness thresholds respectively. If f is smaller
than fitmin, σ is then σmin; if the individual’s fitness is greater than fitmax, σ is then σmax (with
σmin and σmax two constant values set by the user).
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Figure 4: Adaptive range of mutation controlled by the fitness value.

4.8 Adaptive Fitness Function
A metric (ERMS (M0,M1)) is presented in Section 3.4 to evaluate the discrepancies between two
polygon meshes M0 and M1. It is therefore possible to quantify the difference between the mesh
(GtS(i)) simulated using the deformable model with the parameters corresponding to Individual i,
and the real mesh (GtR) extracted from the patient’s dataset at State t. For each individual, two
metrics are computed (one for the diaphragm, and one for the liver). These values can be used to
define the fitness function (fitness) corresponding to i. The optimisation consists in minimising
fitness. The simplest function is:

fitness(i) = αERMS

(
GtS(i, diaph), GtR(diaph)

)
+

(1− α)ERMS

(
GtS(i, liver), GtR(liver)

)
(6)

with 0 ≤ α ≤ 1 to give more or less weight to the diaphragm or the liver. Selecting the value of
α is not trivial because the numerical quantity of the error for the diaphragm and the liver can
be significantly different. If the same weight is applied to both tissue error measurement (i.e. α is
equal to 0.5), the predominant quantity will then have more influence on the optimisation process.
We would actually expect instead the importance of both tissues to be the same during the
minimisation. In an application such as the real-time simulation of liver puncture, a higher level
of fidelity is required for the liver than the diaphragm. Scaling factors on errors are introduced to
give the same relative weight to the diaphragm and liver. Eq. 6 becomes:

fitness(i) = α

EdiaphRMS

ERMS

(
GtS(i, diaph), GtR(diaph)

)
+

(1− α)
E liverRMS

ERMS

(
GtS(i, liver), GtR(liver)

)
(7)

with E liverRMS and EdiaphRMS the error metrics of the best individual provided by the previous generation
for the liver and diaphragm respectively. For each iteration of the evolution loop, these metrics
are updated. For practical reasons, α is rescaled so that the sum α

Ediaph
RMS

+ (1−α)
Eliver

RMS

is equal to one.

5 Results and Validation
The results of the evolutionary algorithm are compared with the outputs of:

• Pure random search: to evaluate the improvement provided by the genetic operators (presen-
ted in [23])
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Name Image size Spacing [mm3] Protocol
Patient A 512×512×136 1.08×1.08×2.5 Breath hold
Patient B 512×512×75 0.98×0.98×5 Breath hold
Patient C 512×512×139 1.17×1.17×2 Breath hold
Patient D 512×512×141 0.98×0.98×2 4D CT scan
Patient E 512×512×287 0.71×0.71×1 4D CT scan

Table 1: Patient dataset properties.

• Basic real-valued genetic algorithm (GA) used as a black box evolutionary optimisation
(i.e. without adaptive mutation variance and without adaptive fitness function): to assess
the efficiency of our new genetic operators

• Two more traditional methods for further comparisons:

– Downhill simplex method [19]
– Powell’s conjugate gradient descent method [21]

For each optimisation process, the errors were recorded. It allows us to ascertain the effectiveness
and usefulness of our adaptive evolutionary algorithm, i.e. to demonstrate that it outperforms the
brute force algorithm, the black box EA, and the classic methods.

To allow fair comparisons, the same “evolved fitness” is used for:

• Downhill simplex

• Powell’s conjugate gradient descent

• Random search

and the same computing time is used with:

• Random search

5.1 Input Data
Five patient specific datasets have been selected (see Table 1). Three datasets (Patients A, B
and C) have been acquired with the “breath hold” protocol, i.e. with only two time steps corres-
ponding to the inhale and exhale states. The patients are asked to hold their breath following the
“ABC" protocol [25]. Two datasets (Patients D and E) correspond to 4D CT scans with ten time
steps each. The data was acquired over the respiratory cycle while the patient breathes normally.
For Patients A, B and C, a single optimisation problem each needs to be solved. For patients with
4D CT scans, one optimisation problem per time step needs to be solved. Every CT scan has been
segmented to extract the organs that are required by the simulation model. Polygon meshes were
then exported using the Marching Cube algorithm [15]. Meshes were decimated and smoothed to
have about 2,000 vertices per organ.

5.2 Parameters of the Evolutionary Algorithm
Table 2 provides a summary of the algorithm’s parameters. The size of population is 200 indi-
viduals. α is set to 33% to give more weight to the liver than the diaphragm, without neglecting
the diaphragm.

5.3 Performance Comparison of the Different Methods
Fig. 5 and Fig. 6 show on the y-left axis the average root mean square error (ERMS) of the liver and
diaphragm for each patient and for each optimisation technique. They show on the y-right axis
the average number of fitness evaluations that was needed to minimise errors. Every stochastic
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population size (n) 200
α 33%

tournament size 5% of the population size
elitism (W ) 9%

mutation probability (X) 55%
crossover probability (Y ) 35%

new blood probability (Z) 1%
σmin 0.001
σmax 0.2

Table 2: Evolutionary algorithm parameters.
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Figure 5: Results for the three patient datasets that have been acquired with the “breath hold”
protocol.
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Figure 6: Results for the two patient datasets that correspond to 4D CT scans. The values are
averaged accross the ten timesteps. For the stochastic optimisation methods, the values are also
averaged accross the fifteen runs per timestep.

optimisation process (adaptive EA, pure random search, and basic real-valued GA) has been
repeated 15 times. The results in Fig. 5 and Fig. 6 show that only our evolutionary algorithm can
minimise successfully both the error of the liver and diaphragm. Classic optimisation methods
fail to explore the 15-D search space to minimise the two error values. This is particularly true
for the downhill simplex method. The basic real-valued genetic algorithm is very slow and fails
to converge in some cases (see Fig. 6(b)). Fig. 5 also shows that our adaptive EA provides stable
results, which is not the case of the other stochastic methods. In addition, the error is lower
with our method, which shows the improvement due to the random search oriented by the genetic
operators over a purely “blind” random search.

Finally, Fig. 7 shows 3D plots of surface meshes for all the patients. The printed colour depends
on a lookup table (LUT) that corresponds to the localised error. Its range varies from blue for
no error to red for the maximum error. The motion is fairly well compensated using our genetic
algorithm.
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Patient A Patient B Patient C Patient D Patient E

Figure 7: 3D plots of surface meshes with localised errors. The first row shows the initial
difference map between real inhale and real exhale states. The second row shows the difference
between real exhale and simulated exhale with our genetic algorithm.

6 Conclusion and Future Work
We have presented an artificial evolution strategy to finely tune the parameters of a multidimen-
sional model of respiration with soft tissue deformations. Further details can be found in our
original paper [22]. The efficiency of the method has been validated using five datasets of real
patients (that is 23 different optimisation problems in total). The advantage of artificial evolution
over the downhill simplex, the conjugate gradient descent, the purely random search, and a black
box basic real-valued genetic algorithm has also been demonstrated. Results obtained using our
artificial evolution framework were both more accurate and more stable.

The proposed evolutionary optimisation is adaptive in two ways:

• The mutation variance is adapted using the fitness

• The weight the two-objective compound fitness is automatically balanced

The current solution that is to balance the different objectives in a single fitness function can
be revisited. A cooperative-coevolutionary approach can be used as the problem we presented
here includes most of the features that have been identified to be difficult to solve using single-
population evolutionary algorithms [20]. Also a Classical multi-objective evolutionary approach
like the famous NSGA-II [5] will be also considered for dealing with multiple objectives.

Another alternative will be the use of packages for automatic algorithm configuration, such as
irace or SPOT [14, 4].
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Contribution
Method: An adaptive artificial evolution strategy is used to finely tune the parameters of a multidimensional model of respiration with soft tissue deforma-
tions [4]. The method efficiency has been validated using five datasets of real patients (23 different optimisation problems in total). Advantage: Adaptive
Artificial Evolution outperforms downhill simplex, the conjugate gradient descent, the purely random search, and a black box basic real-valued genetic
algorithm. Results: Our artificial evolution framework provides results that are both more accurate and more stable.

Input Data
• Patients A, B and C: 3D CT scans with “breath
hold” protocol [5] (i.e. two timesteps corre-
sponding to inhale and exhale).

• Patients D and E: 4D CT scans with ten
timesteps each.

Patient Image size Spacing [mm3] Protocol
A 512×512×136 1.08×1.08×2.5 Breath hold
B 512×512×75 0.98×0.98×5 Breath hold
C 512×512×139 1.17×1.17×2 Breath hold
D 512×512×141 0.98×0.98×2 4D CT scan
E 512×512×287 0.71×0.71×1 4D CT scan

• A, B and C: 1 optimisation problem each;

• D and E: 1 optimisation problem/timestep;

• Every CT scan has been segmented to extract
organ models;

• Polygon meshes were exported using the March-
ing Cube algorithm [3];

• Meshes were decimated and smoothed (2,000
vertices per organ).

Respiration Model
motion

Central
tendon

Muscle
Apposition
with cartilage
Apposition
with ribs
Apposition
with spine

Tendon • Diaphragm fixed
along the spine;

• Diaphragm fixed
to the floating
ribs;

• Liver top attached to the diaphragm;

• Liver and diaphragm are soft tissues modelled
with chain mail algorithm [2];

• Diaphragm divided into: tendon & muscle;

• Tendon part has an up & down motion.

Model Parameters

Liver

Shl

Strl

Cl

Dribs

Ribs

Ddiaph

F (Fx ,Fy ,Fz )

Diaphragm

Spine
Shd

Strd

Cd

+c.z + d = 0

a.x + b.y

Artificial Evolution Strategy

New blood

W%

X%

Y%

Elistism

Selection

Mutation
Crossover

Z%

Initialisation
Extract

parameters

Parents

O!spring

Model Evaluation
Three geometrical models in used at any one time:

G E
S (liver)

(exhale state)
geometry
Simulated final

(inhale state)
geometry
Real initial

G I
R(liver)

Real final geometry
(exhale state)
G E

R (liver)

• Real inspiration state (G I
R) used by respiration model to produce

simulated geometry (G t
S).

• Metrics to evaluate accuracy of respiration model:

Difference between G E
S and G E

R (e.g. ERMS , the root mean square
point-to-surface distance) [1].

Adaptive Mutation Variance
• σ value: fixed in classical implementations.

• Here use of “stress mutation”:

– Use an adaptive strategy for σ:
– σ bigger when fitness (f ) is high:
– favour large exploration around bad individuals.
– σ lower when f is low
– fine tuning in the vicinity of good individuals.

σ(f ) =





σmin, f < fitnessmin

σmax , f > fitnessmax

σmin + (σmax − σmin)×
cos

(
π× f−fitnessmin

fitnessmax−fitnessmin

)
+1.0

2.0 , otherwise
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Results
The results of the evolutionary algorithm are compared with the outputs of:

• Pure random search: to evaluate the improvement provided by the genetic operators.

• Basic real-valued genetic algorithm (GA): to assess the efficiency of our new genetic operators.

• Two traditional methods (Downhill simplex and Powell’s conjugate gradient descent).
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Adaptive Fitness Function
The optimisation consists in minimising fitness (or
cost) function:

f (i) = αERMS

(
G t

S(i , diaph),G t
R(diaph)

)
+

(1− α)ERMS

(
G t

S(i , liver),G t
R(liver)

)

At each optimisation iteration, α is rescaled:

α

Ediaph
RMS

+
(1− α)
E liver

RMS

= 1

(with E liver
RMS and Ediaph

RMS the error metrics of the pre-
vious generation’s best individual).

Figure 8: Poster presented at MIBISOC2013 2013, Brussels, Belgium, May 15–17, 2013.
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