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Abstract

We present and analyse the behaviour of specialised operators designed for cooperative
coevolution strategy in the framework of 3D tomographic PET reconstruction. The basis is
a simple cooperative co-evolution scheme (the “fly algorithm”), which embeds the searched
solution in the whole population, letting each individual be only a part of the solution. An
individual, or fly, is a 3D point that emits positrons. Using a cooperative co-evolution scheme
to optimize the position of positrons, the population of flies evolves so that the data estim-
ated from flies matches measured data. The final population approximates the radioactivity
concentration. In this paper, three operators are proposed, threshold selection, mitosis and
dual mutation, and their impact on the algorithm efficiency is experimentally analysed on a
controlled test-case. Their extension to other cooperative co-evolution schemes is discussed.

1 Introduction

Evolutionary algorithms have been proven efficient to solve the inverse problem of 3D data recon-
struction in tomography [6], and particularly of positron emission tomography (PET) reconstruc-
tion in nuclear medicine [I7] 18] [19].

In PET, a positron emitter is used as radionuclide for labelling. Positrons generally lead to an
annihilation reaction, that emits two photons of 511 keV in opposite directions. This radiation is
detected in coincidence, i.e. using the difference in arrival times of the detected photons of each
pair, and considering that each annihilation produces two photons emitted in exactly opposite
directions. The line joining the detectors that have been activated for a given pair of photons is
called “line of response” (LOR). An overview of reconstruction methods in nuclear medicine can
be found in [20].

In previous work, we showed that a cooperative coevolution strategy (or Parisian evolution)
called “flies algorithm” [II] could be used in Single-Photon Emission Computed Tomography
(SPECT) reconstruction [6], and also in PET reconstruction in 2D-mode [I7, 1], and in Fully-
3D-mode [19]. The marginal fitness was used to propose new operators, i) the threshold selection,
and ii) the mitosis, but no performance analysis of these operators has been performed so far.

This paper addresses this deficiency and it analyses the impact of each operator on the per-
formance of a PET reconstruction algorithm on a controlled test-case. A new operator (namely
the dual mutation) and a pre-initialisation of the flies’ position using back-projection are also
described and analysed. Standard PET reconstruction algorithms are reviewed in Section It
is followed by an overview of the fly algorithm for PET reconstruction. The three operators that
control a varying population size scheme are presented in Section [ as well as an alternate initial-
isation process. Experimental setup and analysis are given in Section [ before presenting some
conclusions and future work in Section [Gl



2 Standard PET reconstruction algorithms

Tomography reconstruction algorithms can be divided into two main categories.

On the one hand, there are analytical methods. These are based on a continuous modelling
and the reconstruction consists in the inversion of measurement equations, such as the well known
Filtered Back-Projection (FBP). This method is now rarely used due to strong artefacts in the
reconstructed data (see Fig. 0l and also because the correction of imaging physics effects need to
be undertaken before the reconstruction, leading to a systematic positive bias in the reconstructed
volume.

On the other hand, there are iterative methods. This class of methods can be split into two
kinds. Algebraic methods are used in X-ray Computed Tomography (CT); statistical methods
are used in nuclear medicine for both SPECT and PET [I6]. They take into account noise, and
the correction of imaging physics can be applied during the reconstruction in the iterative steps.
Iterative methods are relatively easy to model. In practice, the volume is usually discretised into
voxels. Each voxel intensity is treated as an unknown. A system of linear equations is defined
according to the imaging geometry and physics: p = R f, with f the volume to recover, p the
measured data, R the system model. Imaging physics, such as non-uniform attenuation, scatter,
etc. can be modelled in R, whereas they are difficult to handle in an analytic algorithm. The
system of equations is finally solved using the iterative algorithm.

There are different ways to implement these iterative methods. The main differences are about
the computation of the projections, the physics corrections (scattering, random, attenuation, etc.)
are applied, and how the error corrections are applied in the estimated projections.

The Maximum Likelihood - Expectation Maximisation (ML-EM) (or ‘EM”) is a common al-
gorithm in SPECT and PET. It assumes Poisson noise is present in the projection data. ML-EM
does not produce artefacts seen in FBP reconstructions, and it has a better signal-to-noise ratio
in region of low concentration. However, the algorithm converges slowly.

The Ordered Subset - Expectation Maximization (OS-EM) has been proposed to speed-up
convergence of the EM algorithm. Its principle is to reduce the number of projections used at
each iteration of the EM algorithm. Projections are grouped in K sub-groups. The projections of
a sub-group are uniformly distributed around the volume to reconstruct.

3 PET reconstruction using the fly algorithm

The fly algorithm for tomography reconstruction follows the iterative paradigm. The steps of the
iterative method can be described as follows:

1. Each individual, or fly, corresponds to a 3D point. Initially, the flies’ position is randomly
generated in the volume within the scanner. The population of flies corresponds to the tracer
density in the patient.

2. To produce estimated projection data, each fly mimics a radioactive emitter, i.e. a stochastic
simulation of annihilation events is performed. For each annihilation event, a photon is
emitted in a random direction. A second photon is then emitted in the opposite direction. If
both photons are detected by the scanner, the corresponding LOR is recorded. The scanner
properties (e.g. detector blocks and crystals positions) are modelled, and each fly is producing
an adjustable number of annihilation events.

3. The optimisation is performed using genetic operations. The fitness function used during
the selection operation takes into account the comparison between the estimated projections
and the measured projections.

4. Using genetic operations to optimise the position of radioactive emitters, the population of
flies evolves so that the population total pattern matches measured data.



5. Instead of a “generational” evolutionary strategy, in which at each loop every individual
(fly) will be eliminated and replaced with a new fly, we chose a “steady state” evolutionary
strategy.

Note that in classical evolutionary approaches, each individual in the population is a potential
solution; in the Fly approach, a subset of the evolving population itself is the representation of
the solution. After convergence, the “good” flies (see Section 1)) are then extracted to form the
reconstructed volume.

4 Varying population size scheme in a cooperative co-
evolution algorithm

Cooperative co-evolution strategies rely on a “social” formulation of the optimisation problem,
where individuals collaborate or compete in order to collectively build a solution. The fly al-
gorithm is a mono-population strategy (Parisian approach): all flies contribute independently and
collectively to build the solution. In [4] a variable sized population Parisian GP strategy has
been successfully used on a cooperative co-evolution, based on adaptive population deflating and
inflating schemes. We test in this paper an “inflating-only” strategy, the mitosis, described below,
to gradually increase the precision of the reconstructed data.

4.1 Marginal fitness

In this application, the similarities or discrepancies between the estimated projection data and
the measured projection data provided by the imaging system have to be assessed. We chose
City Block distance (also known as Manhattan distance) as the fitness metrics to measure the
distance between two LOR sets. It provides a good compromise between speed and accuracy.
Eq. 0 provides the global fitness, i.e. the population’s cost:

M M
dist(LORy, LOR,) = Y Y " |LORy (i, j) — LOR.(i, j)| (1)
i g

with dist(LOR,,,, LOR,) the City Block distance between LOR,,, and LOR,, the set of LORs for
the measured data and the estimated data respectively, LOR(i,j) is the number of counts of a
LOR between the photon detectors ¢ and j, M is the total number of photon detectors within the
imaging system. LOR sets are efficiently implemented using triangular sparse matrices to reduce
the amount of memory needed to store the data. The smaller global fitness is, the closer the
simulated data will be to the measured data.

In [6], we showed that, when we were addressing the SPECT problem, if we defined the fitness
of a fly as the consistency of the image pattern it generates, with the actual images, it gave an
important bias to the algorithm with a tendency of the smaller objects to disappear. To address
this, we introduced marginal evaluation to assess a given fly. We use a similar approach in PET:

Fun(z) = dist (LOR. — {LOR,}, LOR,,) — dist (LOR., LOR,,) (2)

with Fy,(z) the marginal fitness of Fly z, and LOR. — {LOR,} is the set of LORs simulated by
the whole population without Fly z. In practice, each fly needs to keep a record of its simulated
LORs.

The fitness of a given fly will only be positive when the global cost is lower (better) in presence
rather than in the absence of this fly.

4.2 Threshold selection

The fly to be killed is randomly chosen by the “selection” operator, with a bias towards killing
“bad” individuals. On the other hand, if the new fly is to be created by mutation of another fly,



this fly is randomly chosen by the “selection” operator, with a bias towards reproducing “good”
individuals. Classical selection operators are ranking, roulette wheel and tournament [3]. In our
algorithm, as each fly’s fitness is the value of its (negative or positive) contribution to the quality
of the whole population, we managed to simplify and speed up the selection process by using a
fixed fitness threshold. Any “bad” fly (its fitness is negative) is a candidate for death, and any
“good” fly (its fitness is positive) is a candidate for mutation.

4.3 Mitosis

When the number of flies with a negative fitness decreases, the threshold selection fails to provide
flies to be killed in an acceptable time. It also means that the reconstruction is optimum at the
current resolution. If the resolution is acceptable, i.e. there are enough flies to approximate the
radio-tracer concentration, then the algorithm can stop and the reconstructed volume is extracted
using flies with a positive fitness. If not, a mitosis operator is triggered to gradually increase the
population size. Each fly is split into two new flies to double the population size. One of the two
flies is then mutated.

4.4 Dual mutation

To optimise the flies” position, our algorithm takes advantage of a mutation operator. When a
new fly (b) is created by mutation of an old “good” fly (a), the position of Fly b is first initialised
to the same position as Fly a. The new fly is then stochastically translated in any direction, and
LORs are randomly generated from that fly. The length of the translation vector is a random
variable that follows a Gaussian law whose mutation variance is o2. It needs first to be set to a
large value to better explore the search space. However, a constant large mutation variance will
lead to blurred reconstructed volumes. o has therefore to be gradually reduced.

The use of adaptive mutations in evolutionary algorithms is an ancient idea, directly inspired
by natural adaptive phenomena, e.g. mutations simulated by stress [I4]. In artificial evolution,
various adaptive schemes have been considered for mutation [9], depending of the parameter
to be adapted (standard deviation, o [2], or mutation law [7] for continuous mutation, mutation
probability for discrete mutations [13]). Regarding the adaptation of o, one can distinguish several
strategies :

o o is directly adapted to local measurements, like fitness [I0] or local regularity [12],

e o is tuned depending on some success measurement: in this category fall the famous 1/5"

rule proposed by Schewefel [I5] 5],

o o is subject to an adaptive pressure itself, it is self-adapted [I]: o is considered as an
additional parameter in the genome, and a log-normal Gaussian law is used to control the
“mutation over the mutation”.

These techniques have been proven efficient in various cases, depending on the fitness function and
the genetic engine. It has however to be noticed that the sophistication of a mutation operator
has a computational cost, and that some very rough schemes may perform better due to their
capability to rapidly test numerous sample points [§].

Concurrent testing with various subpopulation has been also considered for mutation law
adaptation [7].

Here we propose an adaptive mutation scheme based on the concurrent testing of two altern-
ative o values (0j0 and opign, with k 0jow = Opign). The update rule is multiplicative as for the
1/5%" rule. If Ohigh gives the best results during the previous period, then both mutation vari-
ances are increased by a predefined factor (pf, with pf > 1). If 0,4, gives better results, then the
variances are multiplied by . The major advantage of this dual mutation scheme is to provide a
fully automatic method to a({apt the mutation variance, whilst keeping the administration cost of
the algorithm relatively light. Additionnally, this scheme does not need to make any assumption



(a) Reference image. (b) Reconstructed image.

Figure 1: Slices (512 x 512 pixels) through the cylinders.

on the ideal success rate of the mutation as in the 1/5'* rule. In practice, the global fitness is

recorded after each mutation. The cumulative difference of the global fitness (A(o)) before and
after mutations is computed to determine which o value provides the best performance over a given
period of time. To prevent oscillation of o values, a criteria can be added to avoid changes when
both opign and 06, provide relatively similar results, e.g. when the absolute difference between
A(01ow) and A(opign), relative to the current global fitness, is below a given threshold (tmut).

4.5 Initialisation of flies on LORs

Iterative reconstruction methods generally make use of a constant volume as an initial estimate
of the volume (see Fig. [5(a)).

However, to speed-up the reconstruction process, a volume is first reconstructed using a fast
analytical algorithm, the simple back-projection, that we implemented on the graphics card using
OpenGL. The algorithm consists in back-projecting each LOR into the volume space. Pixels along
the path of a LOR are updated uniformly. This operation is fast and provides the evolutionary
algorithm with an initial guess of the volume (see Fig. . For each voxel of the initial estimate,
a given number of flies is assigned depending on the voxel intensity (see Fig. .

5 Results

The validity of the reconstruction method has been addressed in [19]. In this paper, we focus
on the evaluation of the performance of the new genetic operators. For each test case, 750000
new individuals have been created. For each tested configuration, the reconstruction has been
repeated 20 times, and the final global fitness was recorded. For every test, unless specified, the
dual variance and the threshold selection operators have been enabled. Results are presented using
box plots (also called box-and-whisker diagrams).

5.1 Experimental setup

Here, a single ring PET system is considered. Its radius is about 430mm. The ring is made of 72
linear blocks that include 8 crystals each. The width of a crystal is about 4.5mm. Fig. shows
the reference image. It includes nine cylinders having two different radii (1 ¢cm and 2.5 cm) and
five different radioactivity concentrations (C7 = 114,590 count/ml, Cy = 2C4, C3 = 3C1, etc.)

5.2 Threshold selection

The size of the population is fixed (160000 flies), i.e. no mitosis has been triggered. The per-
formance of the threshold selection and the tournament selection are presented in Fig. 21 Both
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Figure 2: Performance of the threshold selection and of the tournament selection.

operators provide similar performance. The threshold selection is then preferred because of the
additional information that it brings: enable mitosis, and provide a convergence criteria at a given
resolution (i.e. for a given size of population).

5.3 Mitosis

Two variables have to be assessed at the end of the reconstruction: the current size of the popu-
lation, and the global fitness. The larger the final population, the better the image resolution can
be obtained. The smaller the global fitness, the closer the estimated data to the measured data
is.

Fig. shows the average number of flies in the final population depending on the initial
size of the population (625, 2500, 10000, 40000, 80000, and 160000 flies). When the size of the
population is 160000 flies, no mitosis has been triggered. Fig. shows the corresponding global
fitness.
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Figure 3: Performance of the mitosis operator using variable initial population sizes.

Similar performance in term of global fitness is obtained when the initial population size is
below 10000 flies. The highest final population size is obtained with the smallest initial population
size. Then, the reconstruction converges much faster when the initial population is small (smaller
global fitness and bigger final population size). These results validate the efficiency of the mitosis
operator.

5.4 Dual mutation

The initial 07, value in this test is 35mm, pf is equal to &2, and Ohigh is equal to 20100 -
Different threshold values (t,,,+) have been tested to limit oscillations of o values (Fig. .
Larger values not only prevent oscillations, they also prevent any change of o values, leading to
unsatisfactory results.

Fig. [i(b)] shows the global fitness obtained i) using a constant variance (see (1) and (2)), or ii)
enabling dual mutation operator (see (3) and (4)). The best results are observed using the dual
mutation operator with a very low t,,,; value.
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Figure 4: Performance of the dual variance operator.

(a) Uniform distribution of the (b) Initialisation of the flies’ po- (c) Image reconstructed using
flies. sition using Fig. the simple back projection al-
gorithm.

Figure 5: Initial estimates of the reconstructed image.

5.5 Initialisation of flies on LORs

Fig. and Fig. show two possible initial estimates of the radio-active concentration. In the
first case, flies are uniformly located within the space in the imaging system. In the latter case,
the position of flies is initialised using the simple back projection. Fig. [ shows the performance
of both strategies when the mitosis operator is enabled.

When the initial size of the population is relatively large, the algorithm converges much faster
using this initialisation step. This is not the case when the initial size of the population is relatively
small. It may be due to the fact that the algorithm converges fast enough when only a few flies
are used. When the initial number of flies is slightly higher, the reconstruction converges faster
when the position of flies are initialised using the back projection.

6 Conclusion and futher works

We have presented new operators in cooperative co-evolution and validated their efficiency using
a controlled test-case in PET reconstruction. Both the threshold selection, mitosis and dual
mutation operators have shown their usefulness and ability. Experimental statistics show that the
threshold selection perform as well as the tournament selection, but it has the great advantage
of bringing a convergence criterion related to the current resolution. Additionally, it allows to
trigger an automatic mitosis, i.e. doubling the population size, to improve the resolution. Best
performance, both in term of final resolution and convergence, are obtained using small initial
population size. The dual mutation operator provides an adaptive mutation variance that has
proven to be better than using fixed mutation variances.

Such operators can be used in any other cooperative co-evolution schemes as soon as a marginal
fitness can be considered as beneficial, that obviously depends on the computation cost of the
marginal fitness. For instance, threshold selection, mitosis and dual selection will be considered



as further work for the original fly algorithm on a stereo-vision application ([IT]). The marginal
fitness will also be considered for developing a “deflating operator”. This additional mechanism for
controlling the population size may be interesting in the case of applications whose resolution does
not depend on the size of the final population. Further work will also include the correction of
photon attenuation and Compton scattering, and a concurrent study with the OS-EM algorithm.
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Standard PET algorithms

The labelling radionuclide is a positron emitter.
*A positron combines with an electron to form a
positronium.
*The positronium is converted into radiations
(annihilation reaction):
- two photons of 511 keV are emitted in opposite directions,
- they are detected in coincidence using a dedicated system.

Coincidence
Processing Unit

Sinogram/
Listmode Data

Image Reconstruction

There exists two classes of reconstruction methods:
i) analytical methods:

- are based on continuous modelling,

- the reconstruction process consists in the inversion of
measurement equations,

- the most frequently used algorithm is the filtered back-projection
(FBP).

ii) iterative statistical methods:

- are based on iterative correction algorithms,

- include the most widely used techniques in PET: the maximum-
likelihood expectation-maximization method (ML-EM) and its
derivative, the ordered subset expectation-maximization
algorithm (OS-EM).

Initial Compue_, [Computed projections
quess “projections . |_of estimated image

Correct for
differences

Discrepancies
batween the
measured and

estimated projections

Iterative method model.

The fly algorithm follows the iterative algorithm
paradigm and is based on a simple cooperative co-
evolution scheme (or “Parisian evolution”):

Extracton of the soluion

Tniiliaton

Mutation
Crossover

OFFSPRING
" local evaluation)
«The searched solution is the whole population.
«It has all the usual components of an EA, plus:
- a global fitness computed on the whole population,

-a local fitness computed on each individual to assess their|
contribution to the global solution.

«The local fitness is a marginal fitness, computed via
a “leave-one-out cross-validation” method.

‘—» fitness{P}

< 0 = {i} degrades {P}
‘—» fitness{P-{i}}

>0 = {i} improves {P}

- N
Algorithm|
«Initialisation:
- uniform distribution of the flies, or

- distribution depending on an initial estimate reconstructed,
using a fast simple back projection (SBP)

Uniform distribution of the [ the flis’s using]
flis. position using the SBP. the SBP.

-Computation of simulated projections:
-anindividual - a fly - is a particle emitter.
- random particle trajectories are simulated
- each fly generates its own pattern on the detectors.
- the sum of all these patterns is the ‘image of the flies population’

LOR simulation.

«Comparison with input data, e.g. using city-block distance.

-Correction of differences: the flies are evolved using
genetic operators so that the simulated projections of the flies
population gets as close as possible to the input data given by the|
detectors.

-Extraction of the solution: a subset of the final population
corresponds to the reconstructed volume.

& .
Reconstruction using the Ground truth
3D Flles Fly algorithm
New operat:

«Threshold selection based on the marginal fitness.
Bad flies are randomly killed, and replaced by
mutations of a good fly.

*Multi-resolution based on mitosis operator:

If the number of bad flies is too low (i.e. we got the!
best reconstruction at current resolution), then
double the population size to improve resolution.

«Adaptive mutation via Dual mutation:

-Concurrent testing of two alternative ¢ values

Glow and Gnigh, With kGiow = Oliigh

- If auig is better during the previous period, then

Oigh = Pf X Gnigh and aiow = pf X dtow (With pf>1).

-If o1ow is better, then

Giigh = 1/pf X Guigh and Giow = 1/pfX Otow

-Keep track of aguign and oi performance relative to

global fitness (A(ouign) and A(oiow) respectively).

-If |A(Oign) - A(0tow)| < tua, then no update to prevent

oscillation of o values.

For each test case, 750000 new individuals have been!
created.

Experimental setup:

+ single ring PET system, radius: ~430mm,

+ 72 linear blocks that include 8 crystals each,
crystal's width: ~4.5mm,

+ nine cylinders having two different radii (1 cm and
2.5 cm) and five different radioactivity
concentrations (C1= 114,590 count/ml, Cz = 2C)

(Threshold selection vs tournament selection:)

*The size of the population is fixed (160000 flies), i.e.
no mitosis.

+Both selection operators provide similar performance.
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=Threshold selection enables mitosis, and provides a
convergence criteria at a given resolution (i.e. for a
| given size of population).

(Mitosis: )
+SBP initialisation is only beneficial for large
population size.

initial

om0 % om

Gota! s

m§¢f§* wff o 1

oo om0 o T
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i i)
Without SBP.

) o
sl ot sice

o )
Without SBP.

«The highest final population size is obtained, with the!
smallest initial population size.

TR S

i b ot

owm
it popstensize
o0 e i)

=The reconstruction converges much faster when the
initial population is small (smaller global fithess and
bigger final population size), independently of the initial
guess.

(Dual mutation:
« Initial ooy = 35 MM, pf= V2, Guigi = V2 Giow.

oo om0

y;|11

o tress

Ll

bysg 0%

W e @ @

When the inital population size is 625 flies,
and depending on tw: value.

When the inital population size is
60000 flies with:

(1) constant

(2) constant

(3) fma =0.0%,

(4) tua =0.05%.

= The best results are observed using the dual
mutation operator with a very low fuu. value.

Experimental statistics show that the threshold selection!
perform as well as the tournament selection, but it has
the great advantage of bringing a convergence criterion;
related to the current resolution. It allows to trigger an!
automatic mitosis to improve the resolution. Best]
performance, both in term of final resolution and!
convergence, are obtained using small initial population|
size. The dual mutation operator provides an adaptive|
mutation variance that has proven to be better than
using fixed mutation variances.

Such operators can be used in any other cooperative|
co-evolution schemes as soon as a marginal fitness can|
be considered as beneficial.

Figure 6: Poster presented at International Conference on Parallel Problem Solving From Nature
(PPSN’10), Krakow, Poland, Sept 11-15, 2010.
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